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ABSTRACT

A Midcourse guidance and navigation system for continuous low

thrust vehicles is developed in this research. The vehicle is requir-

ed to reach an allowable region near the desired geosynchronous orbit

from a near earth orbit in minimum time. The angular position of the

vehicle in the orbit is assumed to be unimportant during this midcourse

flight. The magnitude of the thrust acceleration is assumed to be

bounded. The effects of the uncertainties due to the random initial

state, the random thrusting error and the sensor error are included.

A set of orbit elements, known as the equinoctial elements, are

selected as the state variables. The uncertainties are modelled sta-

tistically by random vector and stochastic processes. The motion of

the vehicle and the measurements are described by nonlinear stochastic

differential and difference equations respectively.

A minimum time nominal trajectory is defined and the equation of

motion and the measurement equation are linearized about this nominal

trajectory. An exponential cost criterion is constructed and a linear

feedback guidance law is derived to control the thrusting direction

of the engine. Using this guidance law, the vehicle will fly in a
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trajectory neighboring the nominal trajectory. The extended Kalman

filter is used for state estimation.

Finally a short mission using this system is simulated. The re-

sults indicated that this system is very efficient for short missions.

For longer missions some more accurate ground based measurements and

nominal trajectory updates must be included.

Thesis Supervisor: John Jacob Deyst, Jr., Sc.D.

Title: Associate Professor of Aeronautics and Astronautics, M.I.T.
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CHAPTER I

INTRODUCTION

Recently, solar electric spacecraft propulsion systems of high

efficiency have been developed. The advancements of this new tech-

nology have opened the road to a new era of space exploration and

scientific research. Many space missions utilizing this propulsion

system have been planned by the National Aeronautics and Space

Administration for the second half of this decade. One of these

missions utilizes the solar electric propulsion stage (SEPS) for the

delivery and return of scientific payloads between near earth orbits

and the geosynchronous orbits.

The purpose of this research is to develop a practical and

efficient midcourse guidance and navigation system for these continuous

low thrust vehicles. The vehicle is required to reach an allowable

region near the desired geosynchronous orbit in a minimum amount of

time. During this midcourse phase the angular position of the vehicle

in the orbit is assumed to be unimportant. The magnitude of the thrust

acceleration of the SEPS is constrainted to be bounded. The uncer-

tainties due to the random initial state, the random thrusting error

and sensor error are included.

In Chapter II a set of state variables is selected and a

mathematical model is constructed. The motion of the vehicle is

described by a nonlinear stochastic differential equation and uncer-

tainties are modelled by stochastic processes. In Chapter III a

minimum time nominal trajectory is defined and the equation of motion
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and measurement equation are linearized about this nominal trajectory.

A meaningful cost criterion is constructed and a linear feedback con-

trol law is derived for the guidance system. In Chapter IV a naviga-

tion system is constructed and the complete closed-loop system is

discussed. The computer simulation results of this system are

presented and discussed in Chapter V. Finally conclusions are

presented in Chapter VI and the various equations related to the state

variables are presented in the Appendix.
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CHAPTER II

THE MATHEMATICAL MODEL

The construction of a mathematical model is the most important

step in the design of a gudiance and navigation system for continuous

low thrust vehicles. In this chapter an appropriate set of state

variables is selected. Then the equations describing the motion of

the vehicle and the dynamics of the sensors are chosen. The uncertain-

ties due to the random initial state, the random thrusting error and

the sensor error are modelled statistically. Finally the problem

considered in this research is stated mathematically.

2.A State Variables

The state variables used in this research are the equinoctial

elements [4]. The most important advantage of these elements is

that their equation of motion are free from singularities for zero

eccentricity and zero inclination. This is not the case for the

classical orbit elements [2].

The equinoctial elements can be defined in terms of the

classical orbit elements as follows

a a

h e sin(w+Q)

k e cos(w+N) (2.A.1)

S0 M0+o(+

p tan( )sin 0

q tan( 7 ),cos Q

17



where a, e, i, MO, and 0 are the classical orbit elements

a = semimajor axis

e = eccentricity

i = inclination

M0= mean anomaly at the epoch

w = argument of perigee

0 = longtitude of the ascending node

Alternatively, the equinoctial elements can be defined in terms

of the postition and velocity vectors. A coordinate system is defined

for this purpose as shown in Figure 2.1. The unit vector normal to

the orbital plane is given by

rxv

= rX v (2.A.2)

where r and v are the position and velocity vectors respectively.

The components of this vector can be written in terms of the classical

orbit elements as

w = R10 0 11 T

sin 9 sin i

- -cos Q sin i (2.A.3)

L__ cos i

where R1 is the rotation matrix

cos sin Q 0 1 0 0 cos Q sin Q 0

R = sin Q cos Q 0 0 cos i sin i -sin Q cos Q 0 (2.A.4)

0 0 1 0 sin-i cosi 0 1
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Using (2.A.3) in (2.A.1) the equinoctial elements p and q can be

written in terms of these components

x (2.A.5)P = + Wz

S - -W (2.A.6)
q 1 + w

The unit vectors f_ and gdefined in Figure 2.1 can now be written

in terms of p and q

f = [1 0 0]T

2 2 pq

2 p q

1 2 2

S 2 2 + p  - q (2.A.8)

1 + p2 + q
2 q

The elements h and k are seen to be the components of the eccentricity

vector in the directions of these unit vectors and are given by

h= e g (2.A.9)

k = e T f (2.A.10)

where e is the eccentricity vector

r (r x v) x v
e E =(2.A.11)
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The element a is given by

a = (2 2)-1 (2.A.12)
Irl

If the components of the position and velocity vectors along the unit

vecotrs f and g are denoted by

x r f (2.A.13)

T
Y r g (2.A.14)

x = vT f (2.A.15)

Y = vT  (2.A.16)

the eccentric longtitude F can be written as

(1-k2 )Xl - h k $Y1
cos F = k + (1-k8) 1 - hk (2.A.17)

al h2-k2

(1-h28)Y .- h k BX1
sin F = h + (2.A.18)

where

8 =  1 (2.A.19)

1 + /i-h 2-k

The remaining element 10 is given by Kepler's equation

10 = F - k sin F + hcos F - t (2.A.20)
a

where t is the time measured from the epoch.
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These equations are the transformations from classical orbit

elements or position and velocity vectors to equinoctial elements.

The inverse transformation from equinoctial elements to position

and velocity is also included here for convenience.

To calculate the position and velocity vectors from equinoctial

elements, Kepler's equation (2.A.20) must be solved for the eccentri-

city longtitude F. Then the position and velocity vectors are given

by

r = X f + Y1 g

v - X f + Y1 g

1 = a[l-h2 8)cosF+ h k 8 sinF - k] (2.A.23),

Y1 = a[l-k28)sinF+ h k cosF - hi (2.A.24)

-a [h k cos F - (1-h28) sinF] (2.A.25)
1 r

- E [(1-k2B)cosF - h k 5 sinF3 (2.A.26)

where

r = a[l-k cosF- h sinF] (2.A.27)

2.B Equation of Motion

The only forces assumed to be acting on the vehicle are the

inverse square gravitational attraction of earth, the desired engine

thrust and the random thrusting error. The motion of the vehicle is

described by a nonlinear stochastic differential equation [10].

dx = G(x,t)u + G(x,t)n (2.B.1)
dt
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where u is the desired engine thrust, n is the random thrusting error

and G(x,t)- is a 6x3 matrix of the partial derivatives of the equi-

noctial elements with respect to the velocity vector. The G(x,t)

matrix is given by
x

Glx,t) = (2.B.2)

where

2a 2a TS2a v (2.B.3)
av 1 -

3h_ 1-h2-k2 31 1 1 1 T
-v -- [( - h -)f + ( - h -)g

k(qY 1 - pX1) T+ w (2.B.4)

ma2 l-h2-k 2 -

3k -h -k Xl 1 1 T
a [ -+ k -)f + (- h + kB -- )g]

h(qY1 - PX1) T
- (2.B.5)

ma 2 1-h 2 -k 2

810 2 3 T /-h 2 -k 2  9XIr -  vt] + P (h -
- ma ap h

a 1  DY1 Y1  T
+ k-- f+ (h a + k a )

(qY1-X 1) T
+ w (2.B.6)

ma 2/1-h 2-k 2
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Sl1+p2+"q2  Y w T (2.B.7)

2ma2/1-h2_k 2

aqv X+p1 + (2.B.8)

2ma 2 /1-h 2-k

2.C Measurement Equation

Sensors are used to make measurements and update the vehicle's

estimate of it's state. These measurements which are corrupted by

random sensor errors are assumed to be made at discrete instants of

time. The types and the schedule of these measurements are assumed

to be fixed. The measurement equation is given by

z(t.) = h(x, t.) + v (ti) (2.C.1)

0 = ti<t 2<
. . . <tm = tf

where z(t.) is the measurement vector, h(x,t.) is a vector function
2 1

of the state and v(ti) is the vector of the random sensor error.

The form of the vector function h(x,ti)depends on the type of

measurement. For example, if a earth-diameter and a star-elevation

measurement are taken simultaneously, the vector function h(xti)

given by

2 sin- (r)

h(x,t) =( (2.C.2)
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star

star elevation measurement

vehicle

earth diameter
measurement

Geometry of Earth-diameter
and Star-elevation Measurements

Figure 2.2
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where s is the unit vector from the vehicle to the star and d

is the diameter of earth. These measurements are pictured in

Figure 2.2.

2.D Statistical Modelling of the Uncertainties

There are three sources of uncertainties considered. They are

the random initial state, the random thrusting error and the sensor

error. The initial state x(O) is assumed to be a Gaussian random

vector. The mean and covariance of this vector is denoted by

E[x(0)] = x (2.D.2)

E{[x(O) - x(O)] [x(O)-x(O) T}= M(O) (2.D.2)

If the covariance matrix of the initial state is given in terms

of the position and velocity vectors, the necessary transformation

to the equinoctial elements is given by

Wx x F5x Ix T
M(O) = f- 3- 0 M'(O) ar -v1 i

- (o) L _(o)

where M'(0) is the covariance matrix of the initial position and

velocity vectors. The matrix ax/ar is included in the Appendix.

The random thrusting error is modelled by a zero mean white

Gaussian random process

E[n(t)]=0 (2.D.4)

E[n(t)nT(T)] = N 6 (t-T) (2.D.5)

The matrix N, representing the strength of the process noise, is

dependent on the desired engine thrust u. Both the n and u vectors are

pictured in Figure 2.3. The z' axis is defined in the direction

of the vector u. The x' and y' axes are defined in a plane normal

to u to form a triad. The quantities nl, n 2 and n 3 are assumed to

be zero mean independent random processes

26
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E[ni (t) =0 i=1,2,3 (2.D.6)

Eni (t) n (T)] = N 6(t-T) i=1,2,3 (2.D.7)

E[ni(t) n (T)] = 0 ifj (2.D.8)

These quantities are also assumed to be independent of the vector

u. Let R 2 be the orthogonal transformation such that

u - [ 0 0 ] T  (2.D.9)

Then the vector n(t) and it's correlation can be written as

n = lu R 2 [n1 n2 n 3 ]T (2.D,10)

nl(t)nl(T) nl(t)n 2 (T) nl(t)n3 (T)

E[n(t)n T (T)] = E u-2R2 n 2 (t)n l (T) n2 (t)n2 (T) n 2 (t)n 3 (T) R

n 3 (t)nl (T) n 3 (t)n 2 (T) n3(t)n 3 (T)

(2.D.11)

In view of (2.D.7) and (2.D.8), the correlation of n becomes

N 1 0 0

E[n(t)n T (T)l = lu2 R2 0 N2 0 R2 6(t-T) (2.D.12)

0 0 N3

Furthermore since n 1 and n2 are defined in a plane normal to u, it

is reasonable to assume that

N1 = N2 (2.D.13)

28



Using (2.D.5), (2.D.12).and (2.D.13) the matrix N is given by

N = N [I-u T ] + N3 u u (2.D.14)

The last source of uncertainties is the additive random sensor error

v (ti) in (2.C.1). This random sensor error is modelled as a zero

mean white Gaussian random sequence

E[m(t i ) ] = 0 (2.D.15)

E[Vm T H t i6 (2.D.16)

Finally, the initial state x(0O), the thrusting error n(t) and the

sensor error v (ti) are assumed to be independent of each other.

2.E Statement of the Problem

Given the nonlinear stochastic system in (2.B.1) and (2.C.1), the

problem is to determine the engine thrust u(t), t<t<tf subject to the

bounded magnitude constraint

Ju(t) ( < ur(t) O<t<tf (2.E.1)

such that the vehicle will reach an allowable orbit near the desired

geosynchronous orbit in a minimum amount of time. The function

um(t) in (2.E.1) represents the maximum amount of thrust acceleration

that the SEPS can deliver at time t. The desired geosynchronous orbit

is defined by the vector xf where (Xf) 4 is free. The quantity (Xf)4

is free because the angular position of the vehicle in the orbit is

assumed to be unimportant during the midcourse phase. The allowable

orbit near the desired geosynchronous orbit is defined by the target

set Xtarget in the state space

Xtarget = {x(tf) : Ixi(tf)-(xf)i <(6xf)i, i=l,i 4}(2.E.2)
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where 6xf represents the maximum allowable deviations. The

mathematical modelling of the problem is now completed. For stochastic

systems it cannot be assured that the constraints (2.E.1) and (2.E.2)

are satisfied. Probability measures are introduced in the next

chapter to overcome this difficulty.
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CHAPTER III

THE GUIDANCE SYSTEM

The problem formulated in the last chapter is a nonlinear sto-

chastic optium control problem. This class of problems in general has

no known solutions. In this chapter approximations are introduced so

that a practical solution of the problem can be found. First a min-

imum time nominal trajectory is defined. This nominal trajectory is

the solution to the problem if the uncertainties are absent. Then

the nonlinear stochastic system (2.B.l) and.(2.C.1) is linearized

about this nominal trajectory. The linearized equation of motion is

also discretized for convenience. An exponential cost criterion is

formulated for the discretized linear stochastic system so that the

vehicle will reach the allowable region near the desired geosynchronous

orbit with the magnitude of the control bounded. Finally the solution

to the linear-exponential-gaussian (LEG) terminal cost problem is pre-

sented and a linear feed-back control law is obtained for the guidance

system.

3.A Nominal Trajectory

Since the objective of the problem is to guide the vehicle so

that it will reach the target set in a minimum amount of time, the

natural choice of the nominal trajectory is the minimum time traject-

ory. The state equation of this trajectory is given by

-d = G t)
dt G( t) (3.A.1)
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where x is the nominal state and H is the nominal control. The

initial and the final conditions are

(0) = x (0) (3.A.2)

0 (tf) = x, (3.A.3)

where (x f)4 is free. The nominal control constraint is

u (t) I Um(t) (3.A.4)

The cost criterion to be minimized is

tf
J0 = dt (3.A.5)

The solution of this problem will fix the nominal (Xf)4 and tf.

This problem may be solved by various existing techniques such as the

minimum principle of Pontryagin or differential dynamic programming.

Note that the nominal control u (t) will in general stay on the con--o
straint boundary for this minimum time control problem.

3.B Linearization

The equation of motion and the measurement equation may now be

linearized about the nominal trajectory. Define 6x and 6u as the de-

viations of the state and the control respectively from the nominal

values

x = - (3.B.1)

6u = U - (3.B.2)
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A linear expansion of the equation of motion yields

x G(x t)u + [ G(x,t)u] 6x + [ G(x,t)u] 6u
i- -o - G ,U

x-0,u0 --0,u0

+ G (x 0 ,t) n (3.B.3)

Using (3.B.1) and (3.B.2) this equation may be rewritten as

dx
dt = A(0,u0,t)x + B(x0,t)u + B(X 0 ,t) n

-A(x' u t) x (3.B.4)

where

A(x ') = [-x G(x,t)u]
-- - ?0'o (3.B.5)

B(x0,t) = G(x 0 ,t) (3.B.6) ,

The 6x6 matrix A(x ,u,t) can be calculated explicitly in terms of

the equinoctial elements. This matrix is included in the Appendix.

The process noise n in (3.B.4) still depends on the desired control u.

Another approximation is made here so that n is approximated by a zero

mean white gaussian random process n 0 . The statistics of this process

is given by

E[n 0 (t)] = 0 (3.B.7)

E[n 0 (t) (T)] = N O  
6 (t-T) (3.B.8)

T T

N O = N 1 [I-u 0 u 0 + N 3 T0 (3.B.9)
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Now the linearized equation of motion becomes

dx
t = A(x ,u 0 ,t)x + B(,t),t) n 0

-A(xo,0 ' t ) 0 (3.B.10)

Similarily, a linear expansion of the measurement equation (2.C.1)

yields

z(t i ) = h(0'ti) + [_ h(x,ti)] 6x + m(ti) (3.B.1)

Using (3.B.1) the linearized measurement equation becomes

z(t) = H(?,ti)x(t i ) + ym(ti) + h(Q,t i ) - H(x0,t i)(ti)

(3.B.12)

where

H(,t i ) = [- h(x,t i )]x (3.B.13)

The matrix H(x ,t) is a nonrandom matrix which depends on the type of

measurement taken. For the earth-diameter and star-elevation measure-

ments, this matrix is given by

2d rT

-r / -- Dr

H(xt i ) = r2s T _ (sTr)r T  drT D
r2/r 2 (sr)2 r 4 r -d K

0g x 0 (3.B.14)

where ;-x is a 3x6 matrix of the partial derivatives of the position

vector with respect to the equinoctial elements. This matrix is in-

cluded in the Appendix.
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3.C Discretization

It is more convienient to solve the guidance problem if the state

is expressed as the sum of a stochastic process R and a nonrandom

vector function b. Define R and b by the following equations

dX
- = A(x 0 ,u t)x + B(x ,t)u + B(x ,t)n (3.C.1)

b= A(0,0,t)b - A(x0'u t) (3.C.2)

Then the state x.is given by

x = x + b (3.C.3)

If the boundary condition on b is defined at the nominal final time

tf by

b(tf) = xf (3.C.4)

then Rx(tf) represents the deviation at the target. The corresponding

initial condition of b is given by

(0) = -l(tf ,0) + (T,0)A(x 0 , ,T)x 0  dT (3.C.5)

where #( ,O) is the state transition matrix satisfying the follow-

ing equations

T = A(x0,u 0 T) (Tt) (3.C.6)

0(t,t) = I (3.C.7)

Using t3.C.3) the initial condition for 3F is given by

_(0) = x(0) - b(0) (3.C.8)
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Therefore ~(O) is also a Gaussian random vector with mean and covari-

ance given by

E[x(o)] = x(O) - b(O)

E{[x(O) - x(0) + b(0)] [x(0) - x(0) + b(0)]T } =M(O) (3.C.9)

The linearized measurement equation (3.B.12) may also be written in

terms of x and b

z(t) = H(x,ti)(ti) + m (ti) + h( ti ) + H(,t i ) [b(ti - (t)

(3.C.11)

Now (3.C.1) and (3.C.2) may be discretized. Let the time interval

[0,tf] be partitioned into n equal subintervals

0 = tl<t2<..."<t n+ 1 
= tf (3.C.12)

Then the discretized equations are

x(tj+ ) = (tj+t )x(t ) + + (tj+T) B( xT)u(T)dT + n0j

(3.C.13)

b(t) = (tft.)b(t f) + (tj,T) A(x,y u)x 0 (T)dT (3.C.14)

where n is a zero mean white Gaussian random sequence

E [nOj] = 0 (3.C.15)

E [nQjTk = Nj 6jk (3.C.16)

N oej t (tj+l'-) B(_x ,.) NO (') B (x , T)

ST(tj+ , T)dT (3.C.17)
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If the number n of subintervals is very large, the control u(t)

and the function um(t) can be approximated by step functions

u(t) = u(t ) tj<t9+ (3.C.18)

U(t) = Um(t) tj <t<tj+1  (3.C.19)

Then the discretized equation (3.C.13) becomes

(tj+l ) = (tj+l1tj)R(tj + *(tj+ltj)u(tj) + nj (3.C.20)

where.

(tj+lt ) @(1  fj+1 (t ) B(O,T)dt (3.C.21)

The control constraint equation (2.E.1) also become

Iu(tj) < Um(tj) j=1,2,.... n (3.C.22)

3.D, Exponential Cost Criterion

In the absence of the uncertainties, the minimum time nominal

trajectory defined in section 3.A is the solution to the guidance

problem. When the vehicle is disturbed by random thrusting error,

the trajectory of its true motion will deviate from the nominal tra-

jectory. However, there is no reason to try to drive the vehicle

back to the nominal trajectory. Instead, the control sequence u(tj)

is determined to take into account the uncertainties so that the

vehicle will reach the target set at the nominal time tf with the
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control sequence bounded. For the stochastic system (3.C.11) and

(3.C.20) it cannot be assured that these objectives can be met.

Therefore probability measures are used to evaluate the effectiveness

of the control in acheiving these objectives and the probability that

the vehicle reaches the target and the controls stay within the bounds

is to be maximized.

1 = r [x(tf) E Xtarget and lu(tl)L um(t1 ) and...

and lu(t n ) < Um(tn )l (3.D.1)

This probability can be written as an expectation if the following

indicator functions are defined

I 1ixft(t) i =
I (6x (t i = if Ix (tf) - (xf) jil<(6xf)i

i = 1,6; i 3 4 (3.D.2)

u 3if ju(t.)J>u (t.)

j = 1,2...,n (3.D.3)

Then the probability Jl in (3.D.1) is the expectation of the product

of these indicator functions

J = E i=1,6 Ix lxi (tf) u(t
i 4 fi m i(3.D.4)

Application of dynamic programming to this problem will determine the

optimal control. The character of the control is such that maximum

thrust is utilized until the estimated state reaches the target state.

In effect the estimated state is driven to the target as quickly as

possible and the essential character of the minimum time solution is

also present in the maximum probability solution.
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Since the objective of the SEPS spacecraft iS to reach the

target set in. minimum time, the control sequence u(tj) should

satisfy the equality in (3.C.22). There is no known general solution

for the problem of determining the control sequence to maximize

the expectation J1 in (3.D.4) subject to the linear stochastic

system (3.C.11) and (3.C.20). The product of these indicator func-

tions will now be approximated by a exponential cost function.

Jl = E [exp 
- j uT (t)Lut) + (X(tf)-)T Qf(x(t )-x)](3.D.5)2  j l f f...

The weighting matrices Lj and Qf must be chosen so that each term

of the exponential function in (3.D.5) approximate the corresponding

indicator function in (3.D.4). The normalized second moments of the

indicator functions xf)i [x i(t f ) ] are

x)i+ (xf)i .

1 [(6xf) i]
27 x [x (t )-(xf) I dx(t ) = 3(x xf 3f

i = 1,6; i / 4 (3.D.6)

The normalized second moments of the indicator functions Iu [u(tj)]

are

4 1 3 [Uk(tj)2 d ux (tj d u (tj) d uz (t j )4 ]3 xy uz
3 IT [u(tj)]

[um(t.j) 
2

5

k = x,y,z
j = 1,2 ... n (3.D.7)

where the integration is over a sphere with radius um(tj) . Therefore

if the weighting matrices Lj and Qf are chosen as

5
L = 2I (3.D.8)

S [um(tj
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txf) 1 J
2  0 0 0 0 0
[(6 xf ) 1 ]

10 2 0 0 0 0
[(6xf )2]

0 0 2 0 0 0

[(6xf)5

Qf 0 0 0 0 0 0

1

0 0 0 0 0 [(6xf) 6]1
(3.D.9)

the normalized second moments of the indicators are the same as the

normalized second moments of the corresponding terms in the exponen-

tial cost function. The solution for the problem of the maximiza-

tion of the expectation of this exponential cost criteria is pre-

sented in the next section.

3.E Solution of the LEG Terminal Cost Problem

The linear discrete stochastic system obtained in the last four

sections is given by

x(tj+ I ) = (tj+l tj)j+(t )() + (t ,t)u(t ) +

j = 1,2,...n (3.E.1)

z(ti) = H(x,t i ) _(t i ) + vm(ti) + h(x ,t i )

+ H(Q,t i ) [b(t i ) - (ti

i= 1,2,...m (3.E.2)
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The initial state x(t I) is a Gaussian random vector, the process

noise j and the measurement noise v (ti) are zero mean white Gaus-

sian random sequences all of which are statistically independent.

The measurement noise covariance and the control weighting matrices

are positive definite matrices. The process noise covariance and the

terminal state weighting matrices are positive semi-definite matrices.

The problem of the determination of the control sequence to maximize

the expectation of the exponential cost criteria in (3.D.5) is

called the linear-exponential-gaussian (LEG) terminal cost problem.

The maximization of the expectation in (3.D.5) is the same as the

minimization of the following

2 E exp uT(t )L (t + T(tf)Qf (tf)]

(3.E.3)

with

y = -1 (3.E.4)

This problem is treated in a paper by Speyer, Deyst and Jacobson

[9]. The controls are restricted to be Borel functions of the past

measurement history. The key in solving this problem is to utilize

the results of the Kalman-Bucy filter [5] and dynamic programming [6].

For the terminal cost problem formulated here, the separation theorm

[11] holds. The optimal feedback control is a linear function of the

current state estimate

u(tj) = -A(t) R(tj) (3.E.5)

where i(tj) denotes the current minimum variance estimate of x(t.).

Under the conditions of this problem, the state estimate is the

mean of x(tj) conditioned on the past measurement history [z(tl),

z(t )...z(ti)], t.<t.. At a measurement, this conditional mean is
2 4
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updated by

(tj + ) = (t j- + K(t ) y(tj) (3.E.6)

where x(t +) and x(tj-) denote the estimate of x(t.) after and before

the measurement respectively. 'The measurement residual y(tj) is

given by

(t) = z(t.) - h(x ,t) - H(xt.) b(t.)-x(t.)]

- H(xtj) -(tj) (3.E.7)

The Kalman gain K(tj) is given by

K(tj) = P(t + ) HT (xo -(t ) (3.E.8)

where P(tj) is covariance matrix of the estimation error conditioned

on the past measurement history. This conditional covariance matrix

is updated at a measurement by

P(tj ) = P() -P(t P(tj-) H(x0tj) [H(0,t j ) P(tj H(x ,tj)

+ V(t)]-1 H( ,t ) P(tj ) (3.E.9)

where P(t ) and P(t ) denote P(tj) before and after the measurement

respectively. Between two measurements, _(tj) and P(tj) propagate

according to the following equations

R(tj+) = (tj+l ,t j )  (t ) + (tj+l ,t ) u(t.) (3.E.10)

P(tj+l) = (tj+ 1ltj ) P(t j) T (j+l 1 t j ) + N0j (3.E.11)

The initial state estimate and the error covariance matrix are given

by the apriori statistics of (tI) . While the separation theorm
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holds for this problem, the certainty equivalence principle [3] does

not hold. The feedback control gain A(t ) depends on the noise char-

acteristics. This dependence reflects the quality of the state est-

imate. The feedback control gain matrix is given by

(t) = [L + T(tj+lt j)  Q(tj+ I l(tj+l'tj)  -lT (tj+l,tj

Q(tj+l) (tjtl,tj) (3.E.12)

The matrix Q(tj) is given by a backward difference equation

Q(t j-) = T(t tt j- Q(t)- Q(tj) (tjrtjl 1 T(titjl)

Q(t.) (t,t j1 ) + L-1]- T(t,tj_ Q(tj)

(ttj-1)  (3.E.13)

where at a measurement

Q(t) = Q(t j + ) + YQ(t +) K(tj) [Y-l(t ) - YKT(t) Q(t + )

K(t)]l-1 K(t ) Q(tj+) (3.E.14)

Note that at .a measurement, (3.E.12) becomes

A(tj) = IL +1 T(tj+ ) t3 ) j+ tj+l,tj0]-1

4T(tj+ltj) Q(tj+l) D(tj+ltj) (3.E.15)

where Q(tj+ ) is replaced by Q(tj+l).

The matrix Y(tj) is the covariance matrix of the measurement

residual

Y(tj) = H(x0,t j ) P(tj) HT(xt) + V(tj) (3.E.16)
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Equation (3.E.14) shows the dependance of the control gain matrix on

the noise characteristics explicitly. The terminal condition of

Q(tj) is given by

Q(tn+l Qf + YOQf [p-l(tf+) + Qf ]-1 Qf (3.E.17)

3.F The Guidance System

The linear feedback control law obtained in the solution of the

LEG terminal cost problem can be used for the midcourse guidance of

the SEPS Spacecraft. Since the overall objective of the SEPS Space-

craft is to reach the target set in minimum time, full thrust acceler-

ation will be used to propel the vehicle. The LEG guidance law is

used to determine thrust direction only and full thrust magnitude is.

always utilized. Therefore the guidance law is given by

u'(t.)
u(t) m (tj ' (t ) (3.F.1)

where using (3.C.2) and (3.E.5) u'(t ) is given by

u' (t)= -A(tj) [(t) - b(t.) (3.F.2)

The on-board guidance system is only required to perform the vector

subtraction and matrix multiplication in (3.F.2). The feedback

control gain matrix A(t) and the vector b(t ) can be computed be-

fore the mission and stored in a computer on the SEPS for real time

mission usage. The navigation system to estimate the state x(tj)

is discussed in the next chapter. The guidance law (3.F.2) is

pictured in Figure 3.1.
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Figure 3.1
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CHAPTER IV

THE NAVIGATION SYSTEM

In the last chapter a linear feedback control law was obtained

for the guidance of the SEPS Spacecraft. Using this control law, the

vehicle will fly in a trajectory neighboring the minimum time nominal

trajectory. Therefore the linear Kalman filter presented in section

3.E is not adequate to estimate the vehicle's state. In this chapter

the extended Kalman filter [7] which is adequate for neighbouring

trajectory estimation is discussed. This estimator, together with the

linear feedback control law obtained in the last chapter forms the

complete closed-loop midcourse guidance and navigation system for

the SEPS Spacecraft.

4.A Extended Kalman Filter

The extended Kalman filter has the same structure as the linear

Kalman filter. However, instead of linearizing about the minimum

time nominal trajectory alone, the extended Kalman filter is linear-

ized about a number. f nominal trajectories.. After each measurement,

a new estimate of the state is obtained. This new estimate is used

to define a new nominal trajectory. Then the equation of motion and

the measurement equation are linearized about this new nominal tra-

jectory.

It is more convenient to discuss the extended Kalman filter if

the continuous equation of motion (2.B.1) is used. Now suppose the

control u(t), O<t<tf is known. Let the estimate of the state and the

error covariance matrix of this estimate after the measurement at
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time ti be x(t
+ ) and P(t+ ) respectively. This estimate is used to

define a nominal trajectory xi(t) by

dx (t)
dt = G (x.,t) u(t) ti<t (4.A.)<

xi(t i ) = (4.A.2)
-11

The subscribt i is used to emphasize the dependence of the nominal

trajectory x (t) on the state estimate x(ti). Define x (t) and

6z i (ti+ 1 ) by

6xi(t) = x(t) - xi(t) ti<t (4.A.3)

6zi(ti+l) = z(ti+l) - h(xi,ti+l) (4.A.4)

Linearization of (2.B.1) and (2.C.1) about this nominal trajectory

yields

d6x (t)
~t = A(x ,ut) 6x (t) + 3(xit)n t.<t (4.A.5)

i(ti+l ) = H(xi,ti+l ) 6xi(t ) + v (ti+) (4.A.6)
1 1+1 - + i+1 -- i+l

Now the linear filtering theory can be applied to estimate 6x (t).

Before the measurement at time ti+ 1 , the estimate 6 i(t) and the

error covariance matrix P 6x (t) of this vector are given by the
-.

following equations

d6 . (t)
-- = A(x ,u,t) 6x (t) (4.A.7)

dP 6  (t)

S= A(x ,u,t) P (t) + P (t) AT ( x
, u , t )

-i -1

+ B(x it)N B T(x ,t) t i<t<ti+1 (4.A.8)
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Using (4.A.3) this estimate is related to the estimate R(t) of the

state x(t) by

6 i(t) = _(t) - x(t) t.<t (4.A.9)

Also using (4.A.2)

6R.(t') = 0 (4.A.10)
-1 1

and in view of (4.A.7)

6x (t) = 0 t <t<ti+ 1  (4.A.11)

Therefore before the measurement at time ti+1, the estimate of the

state is given by the nominal trajectory x.i(t)

(t) = x (t) . (4.A.12)

da(t)
dt =G(x,t) u(t)

t i<t<ti+ (4.A.13)
1- i+l

At the measurement at time t.l, 6x(t) and P (t) are updated by the
i+11 6x.--

following equations

6x. (ti+ 1 ) = 6x.(t i ) + K.(t+.) {6 z i i + ) -H(x,t

t6x(t ) }  (4.A.14)
-1 1+1T  

1

Ki(t = Px.t .i) (x ,t. ) V (t ) (4.A.15)
i i+1 6x. i+1 i 1+1 i+1-1

S+ - (t T [) H( i t
6x ( t i+l = 6x ( t i+l - 6x. ( t i+l )

1  ti+ )  ,ti+
- T  -1

i+i+ i+ i+I 6x i+ (A6S(i+ (xiti+) + V(ti+ -1 H(xi,t+) P6x. (ti+1 )
(4.A.16)
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Using (4.A.4), (4.A.9) , (4.A.11) and (4.A.12), (4.A.14) becomes

(t )  (ti+) + K (t+) {z(t ) - h[x(t i),ti ]

(4.A.17)

Using (4.A.3) the error covariance matrix P6x(t) of the estimate of

6xi (t) and the error covariance matrix Pi(t) of the estimate of x(t)

are the same

dP i (t)dt = A(x,u,t) P (t) + P i(t) AT(x,u,t) + B(x,t)N B (x,t)

ti- <ti+l (4.A.18)

+ T
Pi(ti ) = Pi(t+ Pi(ti+) H [x(t)i+ lt +]{H[_(t ),t ]

Pi(ti+ H i+ l ) 'i+ + V(ti+ -1 H[x(ti+ i+ Pi(ti+

(4.A.19)

Hence (4.A.17) can be rewritten as

x(t (ti+ 1 ) + K i(ti+ 1 ) z(ti+1 ) - h[x(ti+ I ,ti+

(4.A.20)

where now the Kalman gain Ki(ti+ ) is given by

Ki (t Pi(ti+) [(ti+) ,ti+] V +1 )(t (4.A.21)

Now the new estimate x(t + ) can be used to define a new nominali+1

trajectory similar to (4.A.1) and (4.A.2) and the preceding method

can be repeated. The result is the extended Kalman filter given by

(4.A.13), (4.A.18) to (4.A.21). This estimator is pictured in

Figure 4.1.
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4.B The Closed-loop Guidance and Navigation System

The linear feedback control law in Chapter 3 and the extended

Kalman filter in the last section forms the complete closed-loop

midcourse guidance and navigation system for the SEPS Spacecraft.

The on-board guidance system consists of the linear feedback control

law (3.F.1) and (3.F.2) where A(tj) and b(tj) are precomputable

quantities. Note that A(t ) is computed by using the equations in

Chapter 3 where the quantities P(tj) and K(tj) are not the same as

the quantities Pi (t) and Ki(t) in the last section. The quantities

P(t.) and K(tj) are computed along the minimum time nominal traject-

ory while the quantities P i(t) and K i(t) along a number of nominal

trajectories. This control law will guide the vehicle to fly along

a trajectory neighbouring to the minimum time nominal trajectory

and reach the target set at the nominal final time tf. The thrust

acceleration is always fully utilized to propel the vehicle and the

control is always on the constraint boundary for this minimumn time

mission. The on-board navigation system consists of the extended

Kalman filter (4.A.13) and (4.A.18) to (4.A.21) where all the quanti-

ties must be computed on-board the vehicle. The on-board computa-

tion of these quantities is the most important disadvantage of this

navigation system. The closed-loop system is pictured in Figure 4.2.

Although this guidance and navigation system is designed for the mid-

course phase, it can also be used for the terminal phase by including

the term for the angular position of the vehicle in the terminal

state weighting matrix. However, in this case the objective of

reaching the target set which now included the angular position of

the vehicle is more difficult to meet than the midcourse case, unless

the nominal mission time is very short.
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CHAPTER V

SIMULATION RESULTS AND DISCUSSION

A computer program has been prepared to simulate this midcourse

guidance and navigation system in real time. Although the system

was originally designed for missions from near earth orbits to geo-

synchronous orbits, the simulation of a shorter mission should

equally well reveal the character and performance of the system.

The simulation results of this short mission, together with a dis-

cussion are presented in this chapter.

5.A Simulation Results

The minimum time deterministic control problem which generates

the minimum time nominal trajectory defined in Section 3.A can only

be solved by numerical methods. For the simulation in this research

an approximate minimum time nominal trajectory is used. For the de-

tails of this approximate minimum time trajectory, the reader is

referred to Shepperd [7]. Flying along this nominal trajectory the

SEPS Spacecraft would reach the desired geosynchronous orbit from a

near earth orbit. If the near earth orbit has a radius of 4300 miles

and an inclination of 28 degrees, and if the desired geosynchronous

orbit has a radius of 2600 miles and an inclination of 0 degrees, the

nominal final time of this mission would be approximately 150 hours.

In the results presented here only the first 22.64 hours of the mis-

sion are simulated. This nominal trajectory is pictured in Figures

5.1 to 5.6. The semi-major axis.is increasing approximately linearly

with time. This shows that the averaged radius of the orbit is in-
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creasing. The equinoctial elements h and k vary sinusuidally with

an increasing amplitude. This increasing of amplitude showed that

the averaged eccentricity of the orbit is increasing. The equinoc-

tial element X0 is increasing monotonically from 0 radians to

(27 + 5.073) radians. This variation showed how the angular posi-

tion of the SEPS Spacecraft in the orbit is changed by the engine

thrust acceleration. Finally the variations of the equinoctial

elements p and q showed that the inclination of the orbit is de-

creasing monotonically.

The values of the input variables used in this simulation are

summarized as follows. The statistics of the initial state are

0.1085 x 10'er

0.0

(0) = 0.0

0.0

-0.249

0.0
(5.A.1)

0.196x10-5er2 0.0 0.169x0-5er 0.0 er -0.153x10-22er

0.0 er 0.139x10- 5 0.0 0.143x10- 5 0.0
0.169x10-5er 0.0 0.150x10- 5  0.0 -0.414xl0 -2 3

0.0 er 0.143x10 - 5 0.0 0.154x10- 5 0.0

-0.153x10-22er 0.0 -0.414xl0 -2 3  0.0 0.6102x10- 7

0.0 er -0.161x10 - 2 2 0.0 0.480x10- 7 0.0

0.0

-0.161x10
- 2 2

0.0

0.480x10
- 7

0.0
(5.A.2)

0.103x10
- 6
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where er is earth-radii

er = 0.20925696 x 108 feet (5.A.3)

The vector x(0) is equivalent to a circular orbit with a radius of

4300 miles and an inclination of 28 degrees. The matrix m(0) is

equivalent to the following standard deviations

(U )1 = 1 mile (5.A.4)

(0r)2 = 5 miles (5.A.5)

(ar)3 = 1 mile (5.A.6)

( v) 1 = 5 feet/second (5.A.7)

(Gv)2 = 15 feet/second (5.A.8)

(a )3 = 15 feet/second (5.A.9)

where (Or)1' ( 2,r), () 3' (v)l' (Ov)2, (av)3 are the standard:

deviations of position and velocity in altitude, down range and

cross track directions respectively. These statistics are typical

of a spacecraft launch trajectory. The nominal final time is

tf = 22.64 hours (5.A.10)

The parameters defining the target set are

0.1329x10'er

0.2670x10
- 2

-2
0.3221x10

- 2

0.5073xl01

-0.2325

-3
0.2068x10

3  (5.A.
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(6x )1 = 0.775 xl0 4er (5.A.12)

(6Xf)2 = 0.858 xl0- 4  (5.A.13)

(6x f)3 = 0.971 xl0
-4  (5.A.14)

(6xf) 5 = 0.594 xl0- 4  (5.A.15)

(6Xf)6 = 0.106 x1 0  (5.A.16)

The values of the parameters 6xf defined the size of the target

set. Since it is expected that the deviation between the true and

nominal state at the nominal final time will not be less than the

expected estimation error, the values dxf in (5.A.12) to (5.A.16)

are taken from the standard deviations of the corresponding diagon-

al elements of the estimation error covariance matrix P(tf). Note

that the covariance matrix P(tf) is computed along the minimum time

nominal trajectory which is not the same as the covariance matrix

Pi (tf) computed using the equations of the extended Kalman filter.

The thrust acceleration function is

g0

um(t) = E
I (5.A.17)

where g 0 is the surface gravity acceleration, Is is the engine

specific impulse and e is the engine's initial thrust acceleration

in terms of the g0's

E = 0.1 x10 2  (5.A.18)

I = 0.4 x10 4 sec (5.A.19)

g0= 32.0 feet/second
2  (5.A.20)

The parameters which represent the 3trength of the process noise are

N1 = 0.1 x10 - 3  (5.A.21)

N, = 0.42 x10 - 7  (5.A.22)
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The value of the parometer N 1 in (5.A.21) is equal to the square

of 1 percent and the value of the parameter N 3 in (5.A.22) is equal

to 1/2 of the square of 1/60 degree. A set of measurements is

taken every half orbital period. Each set of measurements consist

of one earth-diameter and two star-elevation measurements. The

parameter which represents the strength of the measurement noise is

.84x10 - 7  0 0

-7

0 0 0.84x10- (5.A.23)

Note that (0.84x10- 7 ) is equal to the square of 1/60 degrees

The results of this simulation are pictured in Figures 5.7 to

5.12 where the difference between the true state and nominal state,

the difference between the true state and the estimated state as

shown. At the nominal time tf, the results are

-4
0.9232 x 10 er

-4
0.7592 x 10

-4
-0.4034 x 10-

x(t ) true - (tf) nominal -0.6880 10-1

44
-0.2113 x 10

0.6884 x 10- 4  (5.A.24)

0.1796 x 10-3er

0.1423 x 10- 3

0.6247 x 10 - 4

x(tf)true - x(tf) estimated 01330 x

0.3895 x 10 - 4

0.1145 x 10- 4  (5.A.25)
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The corresponding results in terms of the classical orbit elements

are

-4
a(t ) true - a(t ) nominal 0.9232x10 -4er (5.A.26)

e(tf) true - e(t f) nominal = 0.1824x10 - 4  (5.A.27)

-4
i(tf) true - i(t ) nomina

= 0.4009x10
- 4  (5.A.28)

true f nominal

M (tf) true - M0 (tf) nominal= 0.8887x10
-1  (5.A.29)

C(t f) t - (t ) 0. 1974x10 -1  (5.A.30)
(tf true (tf nominal =

(tf) true f nominal

-3

a(tf)true - a(tf) estimated 0.1796x10 er (5.A.32)

e(t )true - e(tf )estimate d  0.1397x10-3  (5.A.33)
f true f estimated

-4
i(t f)true - i(t ) imated =-0.7390x10

- 4  (5.A.34)

M0 (tf true - M0 (t f)estimated
= 0.3179x10 - 2  (5.A.35)

w(t )true - w(t ) 0.1651x10- I  (5.A.36)
f true f e s t i ma t e d

-4
(t) - (t ) estimated =-0.4904x10 (5.A.37)

f true f estimated

5.3 Discussion

The results showed that the SEPS Spacecraft was flying in a

neighboring .trajectory and reached a point close to the desired

target set at the nominal final time tf. Due to the presence of the

uncertainties,the deviation between the true and nominal trajectory

is not small throughout the flight except at time tf. At time tf,

the deviation between the true and the nominal state is small. A

comparison of (5.A.12) to (5.A.16) and (5.A.24) showed that the

closed-loop system is performing reasonably well for this short mis-

sion. The values of th(t )true - h(tf)nominal ,'lk(tf)true-k(tf)nomi-

nall and Ip(tf)true - P(tf)nominall are less than the values of

(6xf)2, (Sxf) 3 and (x f) 5 respectively. The value of Ja(t f)true

- a(tf)nominal is approximately 1.19 times the value of (6xf)1 -
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The value of (q(tf)true - q(tf)nominall is approxiamtely 64.94 times

the value of (6xf) 6. This large ratio is due to the fact that (6 xf) 6

is very small and the actual estimation error lq(tf)true - q(tf)esti-

matedI is approxiamately 10.6 times the value of (6xf) 6 . However,

since the equinoctial elements p and q should have the same charac-

ter, a comparison of the values of Ip(tf)true - P(tf)nominall and

Iq(tf)true - q(tf)nominall in (5.A.24) showed that the closed-loop

system is still performing reasonably well. The value of ((AO)true

- (xO)nominall is not small for this midcourse flight since this

equinoctial element is not included in the exponential,cost criterion.

The deviation between the true and estimated state is also pre-

sented in Figures 5.7 to 5.12. Between two measurements the estima-

tion errors are approximately constant. At a measurement the esti-

mation errors have discontinuities. These estimation errors tend

to increase slowly with time. This indicated that for a longer mis-

sion some more accurate measurements such as ground based tracking

must be used to reduce these estimation errors. At these high ac-

curacy ground based measurements,the minimum time nominal trajectory,

the feedback control gain matrix A(tj) and the vector b(t.) could

also be updated. If these ground based updates are included in the

miscourse guidance and navigation of the SEPS Spacecraft, the closed-

loop system developed in this research should also perform well for

a longer mission.

The most important advantage of using the LEG guidance law in

the closed-loop system is that the weighting matrices Lj and Qf can

be chosen to achieve desired system performance. This fact is indi-

cated by the simulation results. In the linear-quadratic-gaussian

(LQG) problem [1], these weighting matrices usually must be obtained

by iterations to achieve the desired system performance.
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CHAPTER VI

CONCLUSIONS

A practical and efficient midcourse guidance and navigation sys

system for the SEPS Spacecraft has been developed in this research.

To reach the target set in minimum time the SEPS Spacecraft always

utilizes full thrust magnitude. The thrusting direction of the en-

gine is determined by the solution of the LEG terminal cost problem.

The LEG approach provides a systematic way of determining weighting

matrices for problems involving bounds and the control system design

did not require many iterations, as is typically the case when the

LQG approach is used. The solution of this problem, which is the

guidance law, determines the control as a linear function of the

current state estimate. Using this guidance law, the SEPS Space-

craft will fly in trajectory neighbouring the minimum time traject-

ory. To take into account this fact, the extended Kalman filter is

used for the navigation of the SEPS Spacecraft.

The simulation results of a short mission have indicated that

this closed-loop system is very efficient in bring the SEPS Space-

craft to the target set. However, these results have also indicated

that the state estimation errors tend to increase slowly with time.

For a long mission this means that the navigation system would have

very poor state estimation and consequently the closed-loop system

would have very poor performance. Therefore it is concluded that if

this system is to be used effectively for a long mission, some more

accurate ground based measurements and nominal trajectory updates

must be included in the guidance and navigation of the SEPS Space-

craft.
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The determination of an efficient measurement schedule, the fre-

quency of high accuracy ground based measurement and nominal tra-

jectory updates can be carried for further study to improve the

effectiveness and performance of this closed-loop system. The pos-

sibilities of using this closed-loop system for terminal guidance and

navigation of the SEPS can also be investigated.
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APPENDIX A

ax
THE MATRIX --

3x
The matrix - is given by

x Da T pT TT ax T
x _ a h k 0 a aq (A-i)

5r r 9r r 3r 3r ar

where

T 2
Da

T  a
Dr r (A-2)

- r

Dh 1-h -k a 1kYI a
r - [( -k + him - Xl)f + ( - + hm - Y)g
r 2 r 3 1 3k 3 1

ma r r

k(qYl1 -pXl) w
(A-3)

ma2/1-h 2 -k 2

3kT 1-h 2-k2  iX a3  1 a 3

r -2 [( - km - Xl)f + ( - kfm -_ Y)g]- ma r r

h(qi 1-pXl)
+ _-_ w (A-4)

ma2/1-h 2 -k 2

0 1 3pt /1-h2-k2- -(v - 3- 2 B[(h h + k k)f
- ma r ma

3YI Yi, (1i1-pXQl
+ (h --- + k ky 1 -)g] w (A-5)2 T

ma /1-h -k
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2 +p2+q2 (A-6)

ma 2 /-h 2 k2  1

S +p +q X1 (A-7)
2 w

ma 2/1-h -k

v v (A-8)

f - ((A-9)
-f

1 - T (A-10)

- g  
(A-1l)

av av

The partial deriviatives , are presented in Appendix C.
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APPENDIX B

8r
THE MATRIX

3r
The matrix is given by

Dr ar 3r 3r ar Dr ar
x [ = I (B-l)

ax aa TH k 9-, ap ag

where

S(r t v) (B-2)
aa a 2

r ax aY1

S f + g (B-4)

ar v
(B.5

ax810 m

r 2 [q(Y f - (B.6)
p 1+p 2 +q 2  1-- 1 g)-X1 ]

ar
2 [p(Xl + l w ] (B.7)

q l+p2+
2  --
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APPENDIX C

av
THE MATRIX --

@x

av
The matrix - is given by

3v 3v 3y av av av av
x [ - = (C-i)TE " a TS WTX 3 p 9q

where

av
a - - t r ) (C-2)

aa 2a 3r

av l aY1
a = T- f + - g  (C-3)

@ = a 1 f + + 9 q ( C -4 )

3v 3
- -m a r (C-5)

a0 r

av 2v 2 [q(Ylf - g
- w ] (C-6)

p +p
2 +q

2  -

(C-6)

av 2
- 2 [P(Xlg- Y f ) + lw ]  (C-7)

l+p q

1 ma2  h28 3
r- - [(l---  +  ) (1 cos F(X-F) + hB sin F + cos F]

S a 'cos F (-F) - sin F] (C-8)
r r
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X1 ma 2 hkO3 r ahaS ma (1-) + -ah sin F (X-F) + cos F (h.-a sin F)]
ak r W - a r r

ax
+ - [ sin F (X-F) + cos F] (C-9)

r r

I ma 2  hk 3 r aksin (k a cos F)S= g I- - 1) + a cos F (X-F) -sin F (kS -

aYl a

S[ cos F (X-F) - sin F] (C-10)
r r

2 m a 3  2
1a ma 2[ +) r ak8 sin F(X-F) - kB cosF - a sin2F]

ay
+ [Y sin F(?-F) + cos F] (C-ll)

r r

X = X0 + mt (C-12)
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APPENDIX D

THE MATRIX A(x 0 , u, t)

The matrix A(x 0, U0 , t)is given by

A(x0' U0  t) =  [ G(x,t)u]x

a aa a a a a a 2a a aa

.k u) -9 - k 3 v 3 X k vkav k 3 3k

( L ( ) -( u-) )u) ( )

a 2h a h a a a h a ah
i v W " Wv - Wk 3v - XM apav - Dv

ak a a a k a ak a k u) u) u

av u -av u) 3k v - 9 0 - -

0u-
a (3 u) ( u) u) ( u) -( u) u)

a2v- ahav- 3k ahv- ax0 a aWav a3qW

a aq a ag a aq a (aq a aq a2 Uq

(D-1)

where

3 aa 4a 2a T (D-2)
a v) = ( - a) u
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aVT

(- u) 2 u (D-3)

3 vy - 2 -k -

T

a a 2 (D-)
( u) - u (D-4)

- ma

S2 2v 
(D-)

S- m2a 0-

avT

a2 a 2 -
+ ( = k u (D-6)

pk(qav - p

-mam 1-hka

( ax x1  ay

u h ma h8 f + h h g

m a 2 -1(

( hk(q 1 - pX / u (D-7 )
+ av 2 ak i

-- ma

Sh 1 h 1-h2-k2[ 321 3 h

ma 2 (1- 2 km

-f + (--

23 h 1) 3 h
+ m - = -m 

-

m(q aw ua k(D-8)

" a_842/J
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a , h k ax 1  X y1  l h61
S ma2/- ( -- hB X- )f + (-- - h -)g

(1l-2 ) ( 1-pX 1) 1-h2k [ 2X1 hk6 ha 8X1
22 -l-R )X1 m

ma2 (1-h 2 k 2 )1. 5  ma ak

2 h( ai 1

1 hk h6 1
k 2  re 1 m k)
ak m(1-8)

Y 1  ax1
+ (q -p w u P -(D-10)

ma2/ -h2k2

2 2 2X
a h /1-h -k , h f

Xo a ma 2  0
a1 1

Y -X0 k(q - -X0
+ (x-, hR a 1 _ w u+ (D-11)

S0 3 ma 2 /1-h2k 2

a ah I2 ra 1  1 af a 1  1)

p---u) = ma 2  (k- - h6 - a + ( - h -- )

k(qY1 - pX1 ) aw kX1+ w u (D-12)

ma2/1-h 2 -k 2  ma 2 /1h 2 k 2

Sh l-h22k2 Xl X1 f y1 1 _1
Su)= hB ) + ( h -)

-- -- ma w (

ma 1-h k ma2/1-h -k2
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a8 k U 1 3k - /1-h 2-k 2  ' x1 kB a
- - 2a av 2 [aa m Tama

+ 2Y 1  kB ~ 1 3 k y) I
Sk ~l)f + (a F m aa 2 ma 1

DY ax
•Y1 -X1

h(q p ) Th(qa P - w u (D-14)

ma 2 / 1-h 2 -k

a a h y1 , aY 1
-[8 1  hk u) 1(-h + kB )f + (- + km -

ma2 / l - h 2 -k 2

(1-k 2 (qY1 -pX 1) /1-h -k2 X hk3- w - 2 2 + Xl
2 2 2 ma h mh2 (- x

ma (1-h-k )3/2 ma m(l-)

2
k ax1  1  hk ., k_ 1

+ -) f + (a --- +Y1 a 1--) g
m aa h2 m(1-) 1 m ah

ay 1  ax T
h(q - p -)

na 2/1-h 2-k2

a k~ k r x1 x x ay

( = 2 k(- + ka ) f + (- + kB
ma /1-h -k

hk(qY1 -pX 1 ) /1-h2-k 2 [ 2X1 X1

3/2 W m
2 2 2 ma

ma (1-h -k )

k 2 8 3  + a a 1 1 + k2 3
+ ( l +  8k - f  (kk + + m rT -T 1

m(l-8)
ay 1  ax T

kB l h(q-- - p ) . (D-16)
+ -isi _

m k 2d 2 2
_ l-h -k
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( u) = +-1-h -k2
ax0 ma2  I-9 0 To h oJ

h(q 1 1 T

0 0 w u (D-17)

ma 2 /1-h 2-k 2

(ak u) = 1-h2-k +- 1  1 k
2ma

h(qY -PX1 ) aw hX1

ma2 /-h-k + a (D-18)
ma2k1-h2-k2 ma2/1 h k

a ak /1-h 2 -k 2  aX k af 1  kB
- u = -- 2 hXj-X -q h- m+ aq-)2 h m - 1h m q

ma 
J

h(q Y1 -PX 1 ) aw hY 1
-- W Wu (D-19)

ma 2 /1-h 2 _k2 ma 2 0/1-h 2- k 2

x 0 1 0 2 9 it2 3 t
_T_3_ + f -4

a avu) = 2a av ma3  4 r +2 ma

2 2 h2X

+ 2  (- + k f
ma 3a3h aaak

a2Y1  a2  a 11- x 1  T

(h ah + k ) g + w u

ma 1-h 2 -k 2

(D-20)
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Sav 3 l x1S- u - 2 -- - t - ma2h 1  k x1

Y+(h -- y 1  +h(qY 1-pX)
Sma 2 (1-h2_k 2 3/2

+1 2 ( +h 2 +k h) f

ma hma (1--)
1 1 1 1

+ ( - + h + k

a -h- h ahak

+ (q -a w u (D-21)

ma /1-h 2 _k2

8 ax 2 r 3v k 3  ax kX 1

- ma ma2 (1- 8) k )

Y1  aY1 k(qY -1 1

+ (h 1 +kk+- ma2 (1-h2-k2 )

2 2 a 2X ax a2X
S1-h k 2 h 2X +1 + k21

+ 2 ak ah +~k-ak f
-

ma L h 3k

Y 1 aY1  2 y 1

+ (h ah + k + k -T-h aX T

ax 1

+ k Pk0 w u (D-22)

ma2/1-Zh2-k 2
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0 2 3 i-h2-k2 Xl
( u) = ( 2 t 2 [h ax 8

10 ma 0 2 0 ma 0

+ k (h a + kg

ay1  ax1 T

+ 0 0 w u (D-23)

ma 2 / 1-h 2 -k 2

ax0 2 r av /h 2 k2  ax1
p -av t - + (h-

ma- ma

ax Y Y
+ k -) + (h + k
k ap h- -' ap

T
(qY 1 - PX 1 ) w X1 w u

2 2 2 p 2 -
ma 2 / -h-k ma 2 / 1-h-k 2  (D-24)

0 2 3 /1-h2-k2 IhX
- ma ma

axl f aY1  aY1 g
+ k -) + (h - + k a q

(qY1 -PXl) 1w Y1 T
+ 2- + 2 _ - w u
ma2/l-h-k 2  ma2/1-h2-k

(D-25)

S1 1 1) u (D-26)
S-a v ua 2a

(p = 1 1 -h u (D-27)
Y1 h -h 2_k2 a89

89



) = (L 1 k p u (D-28)
k - k h2_k 2 ) v

a u.) L aY u (D-29)
ao0 av - 1 axo av

a -( u) =  pw + (l+p 2+q )  (D-30)
5P V 2 2 2 D2ma /1-h -k2

v u) =  1 2qw + (1+p+q2 ) I (D-31)

S 2ma 2/1-h 2 -k 2

1 1 1 (D-32)
3a 3v x 1 a- v

_) = (k- h_ (D-33)
av . 1-h -k -

a( U) = (_ + k ) U (D-34)
_ - 1 k 1-h 2 k -

, a X= 1 + u (D-35)

.X 1 2T

( u) = 1 - 2pw + (1+p 2 +q (D-36)

2ma2 1-h 2-k2

-_ T
X I " 2 2.w-

S ) = 1 2qw+ (1+p2 +q 2 u (D-37)
3v -2q

2ma /1-h -k
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ah a 1h 2 -m)( h + - + a sin F(hB - sin F)

+ a cos2F (D-38)
r

a2X 1  h2 3 F2h 3
2 a- cos F(8 + - ) + (k sin F) - h cos F) 1-

92h 3 D2X

a a 1 2 h83  2Xl

- r p cos F - cos F I- + 8

2 ] 2X21- [- cos F(1 + k sin F - h cos F) + a sin F
rhh

(D-39)

2 23 23 X

-a sin F (+ + a sin F +
Dkoh r . Mh 1-R a 3h

+ sin F (1 + k sin F - h cos F - a cos F] a

82X 82X 2 82 X (D-40)

_ rFh + - (1+k sin F- h cos F) (D-41)axo ah  r aFah r arah

a2h 2 3
2X a[ (1- )(+ -h 2- ) + sin F) (hp - sin F)

8Fah 
1

+ a cos 2F (D-42)

r

32X1 h20 (3-0)_ aa T = a [(k sin F - h cos F)(1 h2  (3-2) h cos F

(D-43)

32X 1  a2

TrU- 2 cos F (hg - sin F) (D-44)
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a2X1 1 aX1  3 mat [( hkB3  aa 1 ax 1 -at ) - - cos F (2 sinF - hS)
aaak a 9k 2 r a 1-8 r

(D-45)

- = a-x- (D-46)

a2X 1  ah~ a 2X1

a- 2 1 - (2k sin F - h cos F) + sin F aFak
ak

k3 a2X 2
+ + + sin F(1 + k sin F - h cos F)

a2 2 2

a a a2X1  a ax a2  a2x
ax 0 k r aFak + r rk- ( +k sin F h cos F) (D-48)

F1 al-) h k3  a cos F(2 sin F - h) (D-49)
aFak a 1-8 r

Sk = a (k sin F -h cos F) hk8 2 (3-2) + h sin F
(1) r

(D-50)

a2X 2aX 1 _ a2

arak -- sin F (sin F - hS) (D-51)
r

2 1  1 1 3 mat r kh a -2
h r 1) 1 sin F ( kB -2 cos F)

Taah - a h 2 r a 1-8 r

(D-52)
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a1 ak8 3  a Y1
2 (k sin F - 2h cos F) - -cos F

h 2  1-r Dh

+a 3 a2Y 1 2
+ ha cos F(1 + k sin F - h cos F)

1-8 apah

+ a sin F 1 (D-53)

2 1
2 1 h 3  2 a

ak h = a [h 1 -- (2k sin F - h cos F) + p cos F

D2Y k3 D2Y 2
a 1 kB 1
r asin F Fah 1-877h + sin F(1 + k sin F

- h cos F) - a cos F r (D-54)
@rah

2Y 32Y 
2  32

1 -+ - (1 + k sin F - h cos F) (D-55)
ax03h r Fah r Srfh

Skh2(3-2)

D -- a - (k sin F - h cos F) kh 2  - + k cos
ah (1-) r

(D-57)

32Y 1  a2
S-a cos F(kB - cos F) (D-58)

arah - 2r
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S1 1 1  3 mat r k2 3

= ak - - + )+

+ cosF (cos F k) sin2F (D-59)
r r .

2 2

1 1 (D-60)

2 k2 3 2k83
= sin F (8 + + (h cos F - k sin F)( 1-8

ak

a a 12Y I  k83 2Y 1Ssin F + a sin F + 1 8 a y
r Jr h 1-8 30 3K

+ 2sin F(1 + k sin F - h cos F)- a cos F 2 1
arak

(D-61)

a2Y a a2Y a2 "2

10 -k -
+ r- (. + k sin F - h cos F) - T (D-62)

= a (- 1)(8 + -) + cos F (cos F - k)
- a -

-
s in 2 F] (D-63)

r

2YI . k 2B2 (3-28) a

= a (h cosF - k sin F)( 1+ ( 2 1-8) k sin F

(D-64)
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2Y 2
S -- sin F (cos F - kB) (D-65)

r

f 2 [ 9 9 + w] (D-66)

~P l+p2+q2 [

9f 2 (D-67)
q -l+p2+q2 P _

__ 2 q f (D-68)
l+p +q

g= _ 2 [p w] (D-69)
3q 1+p 2 +q 2 -

Dw .
2 f (D-70)

aP 1+p2+q
2

w 2 
(D-71)

S 1+2 2q l+p +q

T
ax I  ar

= f (D-72)
a aa

T
1 r f 

(D-73)
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ay1  r- (D-74)
Ta "a -

S  g (D-75)

1 - f 
(D-76)

Ba a -

f (D-77)

a T 
(D-78)

Pa Ba 9

a av T
- -- g (D-79)

96



REFERENCES

1. Athans, M., "The Role and Use of the Stochastic Linear-Quadra-

tic -Gaussian Problem in Control System Design," IEEE Transaction on

Automatic Control, Vol. AC-16, No. 6, 1971.

2. Battin, R.H., Astronautical Guidance, McGraw-Hill, New York,

1964.

3. Bryson, A.E.,Jr., and Ho, Y.C., Applied Optimal Control, Waltham,

Mass., Blaisdell, 1969.

4. Cefola, P.J., "Equinoctial Orbit Elements - Application to Arti-

ficial Satellite Orbits," Computer Science Corporation, Silver Spring,

Maryland.

5. Kalman, R.E., and Bucy, R.S., "New Results in Linear Filtering

and Prediction Theory," Trans. A SME, Ser. D.J. Basic Eng. 83, 1961.

6. Meier, L. III, Lawson, R.E., and Tether, A.J., "Dynamic Program-

ming for Stochastic Control of Discrete Systems," IEEE Transactions

on Automatic Control, Vol. AC-16, No. 6, Dec. 1971.

7. Jazwinski, A.H., Stochastic Processes and Filterina Theory,

Academic Press, New York, 1970.

8. Shepperd, S.W., "Low Thrust Optimal Guidance for Geocentric

Missions," Sc.M. Thesis, M.I.T., 1972.

9. Speyer, J.L., Deyst, J.J., and Jacobson, D.H., "Optimization of

Stochastic Linear Systems with Additive Measurement and Process Noise

Using Exponential Performance Criteria," to be appearing.

97



10. Wong, E., Stochastic Processes in Information and Dynamical

Systems, McGraw-Hill, New York, 1971.

11. Wonham, W.M., "On the Separation Theorm of Stochastic Control,"

SIAM J. Control, Vol. 6, No. 2, 1968.

98


